ВИЗНАЧЕННЯ АНОМАЛЬНИХ СТАНІВ У РОБОТІ ПРИСТРОЇВ ІНТЕРНЕТУ РЕЧЕЙ
Анотація
Identifying anomaly states of the devices in IoT
Identifying anomaly states is complex problem that have a lot of different solutions. This paper describes how to detect anomalies in IoT sphere using Elman neural network.
Посилання
Y. Yaoa et al., Online Anomaly Detection for Sensor Systems: a Simple and Efficient Approach, Performance Evaluation, vol 00, pp. 1-24, 2010.
S. Rajasegarar et al.,"Distributed anomaly detection in wireless sensor networks in conf., ICCS, Florida, USA 2006.
B.Abhishek et al., Sensor Faults: Detection Methods and Prevalence in Real-World Datasetss, Trans.on Sensor Networks 6(3), 2010.
John A. (2015) Recurrent Neural Networks [Online]. Available: https://en.wikipedia.org/wiki/Recurrent_neural_network.
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2016 Николай Александрович Алексеев, Даниил Евгеньевич Безлюднов
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Authors who submit to this conference agree to the following terms:a) Authors retain copyright over their work, while allowing the conference to place this unpublished work under a Creative Commons Attribution License, which allows others to freely access, use, and share the work, with an acknowledgement of the work's authorship and its initial presentation at this conference.
b) Authors are able to waive the terms of the CC license and enter into separate, additional contractual arrangements for the non-exclusive distribution and subsequent publication of this work (e.g., publish a revised version in a journal, post it to an institutional repository or publish it in a book), with an acknowledgement of its initial presentation at this conference.
c) In addition, authors are encouraged to post and share their work online (e.g., in institutional repositories or on their website) at any point before and after the conference.