ПОКРАЩЕННЯ КЛАСИФІКАЦІЇ ШКІДЛИВИХ URL ЗА ДОПОМОГОЮ ВЕКТОРНИХ ПРЕДСТАВЛЕНЬ НА ОСНОВІ ТРАНСФОРМЕРІВ
Ключові слова:
URL classification, transformer-based models, BERT, LSTM, GRU, MLPАнотація
В роботі узагальнено основні тенденції застосування трансформаторних моделей для векторизації URL-адрес у задачах виявлення шкідливих URL-адрес. Наведено результати порівняльного моделювання ефективності поєднання BERT, SBERT, RoBERTa з нейронними мережами (LSTM, GRU, MLP) для класифікації URL.
Посилання
Rasymas and L. Dovydaitis, “Detection of Phishing URLs by Using Deep Learning Approach and Multiple Features Combinations,” Baltic Journal of Modern Computing, vol. 8, no. 3, Sep. 2020, doi: https://doi.org/10.22364/bjmc.2020.8.3.06
A. Mustafa Hilal et al., “Malicious URL Classification Using Artificial Fish Swarm Optimization and Deep Learning,” Computers, Materials & Continua, vol. 74, no. 1, pp. 607–621, 2023, doi: https://doi.org/10.32604/cmc.2023.031371
Malicious And Benign URLs dataset. URL: https://www.kaggle.com/datasets/si ddharthkumar25/malicious-and-benign-urls (дата звернення: 20.03.2025).
C. Zhao, S. Si, T. Tu, Y. Shi, and S. Qin, “Deep-Learning Based Injection Attacks Detection Method for HTTP,” Mathematics, vol. 10, no. 16, p. 2914, Aug. 2022, doi: https://doi.org/10.3390/math10162914
CSIC 2010 Web Application Attacks dataset https://www.kaggle.com/datasets/ispangler/csic-2010-web-application-attacks (дата звернення: 20.03.2025).
B. Goparaju and B. S. Rao, “Distributed Denial-of-Service (DDoS) Attack Detection using 1D Convolution Neural Network (CNN) and Decision Tree Model,” Journal of Advanced Research in Applied Sciences and Engineering Technology, vol. 32, no. 2, pp. 30–41, Sep. 2023, doi: https://doi.org/10.37934/araset.32.2.3041
B. Yu, F. Tang, Daji Ergu, R. Zeng, B. Ma, and F. Liu, “Efficient Classification of Malicious URLs: M-BERT - A Modified BERT Variant for Enhanced Semantic Understanding,” IEEE Access, pp. 1–1, Jan. 2024, doi: https://doi.org/10.1109/access.2024.3357095
F. Torregrossa, R. Allesiardo, V. Claveau, N. Kooli, and G. Gravier, “A survey on training and evaluation of word embeddings,” International Journal of Data Science and Analytics, vol. 11, no. 2, pp. 85–103, Feb. 2021, doi: https://doi.org/10.1007/s41060-021-00242-8
F. Torregrossa, R. Allesiardo, V. Claveau, N. Kooli, and G. Gravier, “A survey on training and evaluation of word embeddings,” International Journal of Data Science and Analytics, vol. 11, no. 2, pp. 85–103, Feb. 2021, doi: https://doi.org/10.1007/s41060-021-00242-8
J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pretraining of Deep Bidirectional Transformers for Language Understanding,” arXiv.org, May 24, 2019. https://arxiv.org/abs/1810.04805
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія

Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Authors who submit to this conference agree to the following terms:a) Authors retain copyright over their work, while allowing the conference to place this unpublished work under a Creative Commons Attribution License, which allows others to freely access, use, and share the work, with an acknowledgement of the work's authorship and its initial presentation at this conference.
b) Authors are able to waive the terms of the CC license and enter into separate, additional contractual arrangements for the non-exclusive distribution and subsequent publication of this work (e.g., publish a revised version in a journal, post it to an institutional repository or publish it in a book), with an acknowledgement of its initial presentation at this conference.
c) In addition, authors are encouraged to post and share their work online (e.g., in institutional repositories or on their website) at any point before and after the conference.