АВТОМАТИЗАЦІЯ РОБОТИ ДАТАЦЕНТРУ З ВИКОРИСТАННЯМ МАШИННОГО НАВЧАННЯ
Ключові слова:
ДАТАЦЕНТР, МАШИННЕ НАВЧАННЯАнотація
Використання розвиваючого штучного інтелекту в датацентрах для автоматизації роботи відкриває безліч можливостей і обіцянок щодо значного прориву в інфраструктурі цих об'єктів.
Посилання
Gong D. Top 6 Machine Learning Algorithms for Classification. Medium. URL: https://towardsdatascience.com/top-machine-learning-algorithms-for-classification-2197870ff501 (date of access: 23.03.2024).
Smoke Detection Dataset. Kaggle: Your Machine Learning and Data Science Community. URL: https://www.kaggle.com/datasets/deepcontractor/smoke-detection-dataset?select=smoke_detection_iot.csv (date of access: 23.03.2024).
Chang S. S., Chen O. W., Varshney S. Autonomous Datacenter: Datacenter That Runs Itself and Heals Itself. De Gruyter, Inc., 2020. 300 p.
Machine Learning Empowered Intelligent Data Center Networking / T. Wang et al. Singapore : Springer Nature Singapore, 2023. URL: https://doi.org/10.1007/978-981-19-7395-6 (date of access: 23.03.2024).
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Authors who submit to this conference agree to the following terms:a) Authors retain copyright over their work, while allowing the conference to place this unpublished work under a Creative Commons Attribution License, which allows others to freely access, use, and share the work, with an acknowledgement of the work's authorship and its initial presentation at this conference.
b) Authors are able to waive the terms of the CC license and enter into separate, additional contractual arrangements for the non-exclusive distribution and subsequent publication of this work (e.g., publish a revised version in a journal, post it to an institutional repository or publish it in a book), with an acknowledgement of its initial presentation at this conference.
c) In addition, authors are encouraged to post and share their work online (e.g., in institutional repositories or on their website) at any point before and after the conference.