MAPREDUCE CALCULATING MODEL ON MOBILE DEVICES
Анотація
MapReduce обчислювальна модель на мобільних пристроях
Ця стаття пояснює використання найновішої моделі програмування, яка робить велику кількість операцій обчислення паралельно на мобільних пристроях, де програма працює в ізольованому програмну середовищі без особливих потреб і емулює мобільний пристрій таким же потужним, як і ПК.
This article explain the use of the newest programming model that makes big number of operations calculating in parallel on mobile devices, where program runs in sandbox without specific needs and simulate mobile as powerful as PC.
Посилання
Jeffry Dean and Sanjay Ghemawat (2014). MapReduce: Simplified Data Processing on Large Clusters. Google, Inc.
University of California, Barkeley. Source: http://wla.berkeley.edu/~cs61a/fa11/lectures/communication.html.
R. G. Gallager, P. A. Humblet, and P. M. Spira (January 1983). "A Distributed Algorithm for Minimum-Weight Spanning Trees".
Hamilton, Howard. "Distributed Algorithms". Retrieved 2013-03-03 .
##submission.downloads##
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2018 Vladislav Nikolaevich Pavlenko
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Authors who submit to this conference agree to the following terms:a) Authors retain copyright over their work, while allowing the conference to place this unpublished work under a Creative Commons Attribution License, which allows others to freely access, use, and share the work, with an acknowledgement of the work's authorship and its initial presentation at this conference.
b) Authors are able to waive the terms of the CC license and enter into separate, additional contractual arrangements for the non-exclusive distribution and subsequent publication of this work (e.g., publish a revised version in a journal, post it to an institutional repository or publish it in a book), with an acknowledgement of its initial presentation at this conference.
c) In addition, authors are encouraged to post and share their work online (e.g., in institutional repositories or on their website) at any point before and after the conference.