ПІДХІД ДО МАРКУВАННЯ ЗОБРАЖЕНЬ
Анотація
Approach to marking images
In this paper propose the method to speed up labeling of the image for creating new datasets. We need datasets for training convolutional neural networks that solve the various task of computer vision for example: image classification, object detection, and localization.
Посилання
Computer Vision for Human Computer Interaction Karlsruhe Institute of Technology. Sloth [Електронний ресурс] – режим доступу: http://sloth.readthedocs.io/en/latest/, вільний.
Tzu Ta Lin. LabelImg [Електронний ресурс] – режим доступу: https://github.com/tzutalin/labelImg, вільний.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition”, arXiv:1512.03385, 2015.
Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi, “You Only Look Once: Unified, Real-Time Object Detection”, arXiv:1506.02640, 2015.
Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, arXiv:1506.01497, 2015.
##submission.downloads##
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2018 Максим Станіславович Остапенко, Олена Сергіївна Штогріна
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Authors who submit to this conference agree to the following terms:a) Authors retain copyright over their work, while allowing the conference to place this unpublished work under a Creative Commons Attribution License, which allows others to freely access, use, and share the work, with an acknowledgement of the work's authorship and its initial presentation at this conference.
b) Authors are able to waive the terms of the CC license and enter into separate, additional contractual arrangements for the non-exclusive distribution and subsequent publication of this work (e.g., publish a revised version in a journal, post it to an institutional repository or publish it in a book), with an acknowledgement of its initial presentation at this conference.
c) In addition, authors are encouraged to post and share their work online (e.g., in institutional repositories or on their website) at any point before and after the conference.