МЕТОДИ УПРАВЛІННЯ РЕСУРСАМИ ВЕЛИКИХ ДАНИХ В РОЗПОДІЛЕНИХ ОБЧИСЛЮВАЛЬНИХ СИСТЕМАХ
Анотація
Methods of big data resource management in distributed computing systems
This paper analyzed the basic methods of of Big Data resource management. To perform the experiment was deployed and configured test environment in Amazon Compute Cloud.
Посилання
Distributed resource management for high throughput computing [Електронний ресурс]/ Режим доступа: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=709966, вільний доступ.
Research on Component and DAG Based Dynamic Workflow System Chuan-Sheng Zhou ; Li-Hua Niu ; Jie Liu (PCSPA), 2010.
Association_rule_learning [Електронний ресурс] /Режим доступа: http://en.wikipedia.org/wiki/Association_rule_learning#Algorithms, вільний доступ.
Adaptive distributed algorithms for distributed computing systems Yichuan Hu ; Ribeiro, A. Communication, Control, and Computing (Allerton), 2010 48th Annual Allerton Conference.
##submission.downloads##
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2017 Микола Олександрович Алексєєв, Тетяна Вадимівна Борис
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Authors who submit to this conference agree to the following terms:a) Authors retain copyright over their work, while allowing the conference to place this unpublished work under a Creative Commons Attribution License, which allows others to freely access, use, and share the work, with an acknowledgement of the work's authorship and its initial presentation at this conference.
b) Authors are able to waive the terms of the CC license and enter into separate, additional contractual arrangements for the non-exclusive distribution and subsequent publication of this work (e.g., publish a revised version in a journal, post it to an institutional repository or publish it in a book), with an acknowledgement of its initial presentation at this conference.
c) In addition, authors are encouraged to post and share their work online (e.g., in institutional repositories or on their website) at any point before and after the conference.