ПОВЫШЕНИЕ ПРОИЗВОДИТЕЛЬНОСТИ РАСПРЕДЕЛЕННЫХ ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ С ДИНАМИЧЕСКОЙ АРХИТЕКТУРОЙ С ПОМОЩЬЮ НЕЙРОННЫХ МЕТОДОВ ПРОГНОЗИРОВАНИЯ
Анотація
Distributed Computing Systems with Dynamic Architecture
Productivity Increasing Using Neural Networks Methods
The one of progressive ways to solve the problem of constantly growing data processing is to build high-performance distributed environments which include the number of personal devices having tangible computational power in total. Nowadays a lot of so-called volunteer computations implementations are known but still there's a challenge of effective tasks distribution between such client devices because of its non-stable participation. The work is dedicated to increasing of distributed computing systems with dynamic architecture productivity using neural network methods.
Посилання
What is HTCondor? [Электронный ресурс] – Режим доступа: https://research.cs.wisc.edu/htcondor/description.html. / – Электрон. текстовые данные (дата обращения: 08 марта 2016).
OS Platform Statistics – [Электронный ресурс] – Режим доступа: https://www.w3schools.com/browsers/browsers_os.asp – Электрон. текстовые данные (дата обращения: 26.03.2017).
Microsoft Windows – [Электронный ресурс] – Режим доступа: http://research.cs.wisc.edu/htcondor/manual/v8.7/7_2Microsoft_Windows.html – Электрон. текстовые данные (дата обращения: 26.03.2017).
##submission.downloads##
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2017 Роман Михайлович Мазанка, Микола Олександрович Алєксєєв
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Authors who submit to this conference agree to the following terms:a) Authors retain copyright over their work, while allowing the conference to place this unpublished work under a Creative Commons Attribution License, which allows others to freely access, use, and share the work, with an acknowledgement of the work's authorship and its initial presentation at this conference.
b) Authors are able to waive the terms of the CC license and enter into separate, additional contractual arrangements for the non-exclusive distribution and subsequent publication of this work (e.g., publish a revised version in a journal, post it to an institutional repository or publish it in a book), with an acknowledgement of its initial presentation at this conference.
c) In addition, authors are encouraged to post and share their work online (e.g., in institutional repositories or on their website) at any point before and after the conference.